(1)由题意可得a2=1+d=b2=q,a6=1+5d=b3=q2,解之即可;
(2)假设存在常数a、b满足等式,可得(3-loga4)n+loga4-b-2=0,进而可得,解之即可.
【解析】
(1)由题意可得a2=1+d=b2=q,a6=1+5d=b3=q2,
上述两式联立求解可得q=4,d=3.
(2)假设存在常数a、b满足等式,
由an=1+(n-1)d=3n-2,bn=qn-1=4n-1及an=logabn+b
得(3-loga4)n+loga4-b-2=0,
∵n∈N*,
∴,
∴a=,b=1,故存在.