满分5 > 高中数学试题 >

18、在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD...

18、在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BC⊥平面PBD;
(2)设E为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角E-BD-P的大小为45°.

manfen5.com 满分网
(1)由题设条件可证得DP,DA,DC三线两两垂直,故可以D为原点建立空间直角坐标系D-xyz,按题中所给的条件,给出各点的坐标,求出直线BC的方向向量以及平面PBD的法向量,由数量积为0证明线面垂直. (2)由(1)中的坐标系,及E为侧棱PC上一点,,给出用参数表示的点E的坐标,求出两个平面EBD与平面PBD的法向量,由公式用参数表示出二面角的余弦值,再令其值是45°的余弦值,解出其参数值即可. 【解析】 (1)证明:平面PCD⊥底面ABCD,PD⊥CD,所以PD⊥平面ABCD, 所以PD⊥AD.如图,以D为原点建立空间直角坐标系D-xyz. 则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1)(6分)=(-1,1,0). 所以=0,BC⊥DB, 又由PD⊥平面ABCD,可得PD⊥BC,又BD∩PD=D 所以BC⊥平面PBD.(8分) (2)平面PBD的法向量为=(-1,1,0),,λ∈(0,1),所以E(0,2λ,1-λ), 设平面QBD的法向量为n=(a,b,c),=(0,2λ,1-λ) 由n•=0,n•=0,得所以, ∴,(10分) 由cos解得λ=-1(12分) (用传统方法解得答案酌情给分)
复制答案
考点分析:
相关试题推荐
近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨.现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为50%,后2天均为80%,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天数x的分布列和期望.
查看答案
已知△ABC的内角A、B、C的对边分别为a、b、c,manfen5.com 满分网,且c=3.
(1)求角C;
(2)若向量manfen5.com 满分网manfen5.com 满分网共线,求a、b的值.
查看答案
(几何证明选讲选做题)如图,PC切圆O于点C,割线PAB经过圆O,弦CD⊥AB于点E,已知圆O的半径为3,PA=2,则PC=   
manfen5.com 满分网 查看答案
(坐标系与参数方程选做题)已知在平面直角坐标系xoy中,圆C的参数方程为manfen5.com 满分网,(θ为参数),以ox为极轴建立极坐标系,直线l的极坐标方程为manfen5.com 满分网=0则圆C截直线l所得的弦长为    查看答案
已知函数f(x)=x2-2x,g(x)=ax+2(a>0)对任意的x1∈[-1,2]都存在x∈[-1,2],使得g(x1)=f(x)则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.