满分5 > 高中数学试题 >

已知定义域为R的函数是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不...

已知定义域为R的函数manfen5.com 满分网是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(Ⅰ)利用奇函数定义f(x)=-f(x)中的特殊值求a,b的值; (Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2-2t)+f(2t2-k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围. 【解析】 (Ⅰ)因为f(x)是奇函数,所以f(0)=0, 即 又由f(1)=-f(-1)知. 所以a=2,b=1. (Ⅱ)由(Ⅰ)知, 易知f(x)在(-∞,+∞)上为减函数. 又因为f(x)是奇函数, 所以f(t2-2t)+f(2t2-k)<0 等价于f(t2-2t)<-f(2t2-k)=f(k-2t2), 因为f(x)为减函数,由上式可得:t2-2t>k-2t2. 即对一切t∈R有:3t2-2t-k>0, 从而判别式. 所以k的取值范围是k<-.
复制答案
考点分析:
相关试题推荐
已知函数y=Asin(ωx+φ)(A>0,|φ|<manfen5.com 满分网,ω>0)的图象的一部分如图所示.
(1)求f(x)的表达式;    
(2)试写出f(x)的对称轴方程.

manfen5.com 满分网 查看答案
已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
查看答案
已知角α终边经过点manfen5.com 满分网的值.
查看答案
已知函数f(x)=(x2-3x+3)•ex,设t>-2,函数f(x)在[-2,t]上为单调函数时,t的取值范围是    查看答案
计算定积分manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.