满分5 > 高中数学试题 >

已知定义域为R的函数f(x)=是奇函数. (Ⅰ)求b的值; (Ⅱ)判断函数f(x...

已知定义域为R的函数f(x)=manfen5.com 满分网是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(Ⅰ)利用奇函数定义f(x)=-f(x)中的特殊值f(0)=0求b的值; (Ⅱ)设x1<x2然后确定f(x1)-f(x2)的符号,根据单调函数的定义得到函数f(x)的单调性; (III)结合单调性和奇函数的性质把不等式f(t2-2t)+f(2t2-k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围. 【解析】 (Ⅰ)因为f(x)是奇函数,所以f(0)=0, 即 (Ⅱ)由(Ⅰ)知 , 设x1<x2则f(x1)-f(x2)=-= 因为函数y=2x在R上是增函数且x1<x2∴f(x1)-f(x2)=>0 即f(x1)>f(x2) ∴f(x)在(-∞,+∞)上为减函数 (III)f(x)在(-∞,+∞)上为减函数,又因为f(x)是奇函数, 所以f(t2-2t)+f(2t2-k)<0 等价于f(t2-2t)<-f(2t2-k)=f(k-2t2), 因为f(x)为减函数,由上式可得:t2-2t>k-2t2. 即对一切t∈R有:3t2-2t-k>0, 从而判别式 . 所以k的取值范围是k<-.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)设t=log2x,求t的取值范围;
(2)求f(x)的最值,并给出函数取得最值时相应的x的值.
查看答案
已知函数f(x)=loga(x+2)(a>0,a≠1)在区间[0,6]上的最大值比最小值大manfen5.com 满分网,求a的值.
查看答案
已知f(x)=2x,g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.
查看答案
计算
(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
给出下列四种说法:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=manfen5.com 满分网+manfen5.com 满分网与y=manfen5.com 满分网都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数.
其中正确的序号是    (把你认为正确叙述的序号都填上). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.