满分5 > 高中数学试题 >

已知等差数列{an}的前n项和为Sn,a3=0,S4=-4. (1)求数列{an...

已知等差数列{an}的前n项和为Sn,a3=0,S4=-4.
(1)求数列{an}的通项公式;
(2)当n为何值时,Sn取得最小值.
(1)等差数列{an}中,由a3=0,S4=-4,利用等差数列的通项公式和前n项和公式,联立方程组,求出首项a1和公差d,由此能求出an. (2)由(1),得=,由此能求出当n为何值时,Sn取得最小值. (本小题满分14分) 【解析】 (必修5第2.3节例4的变式题) (1)∵等差数列{an}中,a3=0,S4=-4, ∴,(4分) 解得a1=-4,d=2.(6分) ∴an=-4+(n-1)×2=2n-6.(8分) (2) =n2-5n=.(12分) ∵n∈N*, ∴当n=2或n=3时,Sn取得最小值-6.(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数y=h(x)在点p(x,h(x))处的切线方程为l:y=g(x),当x≠x时,若manfen5.com 满分网在D内恒成立,则称P为函数y=h(x)的“类对称点”,请你探究当a=4时,函数y=f(x)是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
查看答案
设k∈R,函数manfen5.com 满分网,F(x)=f(x)-kx,x∈R,试讨论函数F(x)的单调性.
查看答案
水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为manfen5.com 满分网
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t<i表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).
查看答案
已知函数manfen5.com 满分网
(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.
查看答案
已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同时满足条件:
①∀x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0.求m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.