已知等差数列{a
n}的前n项和为S
n,a
3=0,S
4=-4.
(1)求数列{a
n}的通项公式;
(2)当n为何值时,S
n取得最小值.
考点分析:
相关试题推荐
已知函数f(x)=x
2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数y=h(x)在点p(x
,h(x
))处的切线方程为l:y=g(x),当x≠x
时,若
在D内恒成立,则称P为函数y=h(x)的“类对称点”,请你探究当a=4时,函数y=f(x)是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
查看答案
设k∈R,函数
,F(x)=f(x)-kx,x∈R,试讨论函数F(x)的单调性.
查看答案
水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t<i表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).
查看答案
已知函数
(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数g(x)的值域.
查看答案
已知f(x)=m(x-2m)(x+m+3),g(x)=2
x-2,若同时满足条件:
①∀x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0.求m的取值范围.
查看答案