满分5 > 高中数学试题 >

已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1:与...

已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1manfen5.com 满分网与曲线C2manfen5.com 满分网(t∈R)交于A、B两点.求证:OA⊥OB.
先将极坐标方程化为普通方程,再将这两个方程联立,消去x,得y2-4y-16=0,再由韦达定理研究. 证:曲线C1的直角坐标方程x-y=4,曲线C2的直角坐标方程是抛物线y2=4x,(4分) 设A(x1,y1),B(x2,y2),将这两个方程联立,消去x, 得y2-4y-16=0⇒y1y2=-16,y1+y2=4,(6分) ∴x1x2+y1y2=(y1+4)(y2+4)+y1y2=2y1y2+4(y1+y2)+16=0.(8分) ∴,∴OA⊥OB.(10分)
复制答案
考点分析:
相关试题推荐
已知矩阵manfen5.com 满分网manfen5.com 满分网
(1)计算AB;
(2)若矩阵B把直线l:x+y+2=0变为直线l',求直线l'的方程.
查看答案
已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.
查看答案
已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).
(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n).
查看答案
已知半椭圆manfen5.com 满分网和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆manfen5.com 满分网内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点manfen5.com 满分网时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

manfen5.com 满分网 查看答案
manfen5.com 满分网扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为manfen5.com 满分网平方米,且高度不低于manfen5.com 满分网米.记防洪堤横断面的腰长为x(米),外周长(梯形的上底线段BC与两腰长的和)为y(米).
(1)求y关于x的函数关系式,并指出其定义域;
(2)要使防洪堤横断面的外周长不超过10.5米,则其腰长x应在什么范围内?
(3)当防洪堤的腰长x为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.