满分5 > 高中数学试题 >

一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋...

一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是manfen5.com 满分网.现从袋中任意摸出2个球.
(1)若n=15,且摸出的2个球中至少有1个白球的概率是manfen5.com 满分网,设ξ表示摸出的2个球中红球的个数,求随机变量ξ的概率分布及数学期望Eξ;
(2)当n取何值时,摸出的2个球中至少有1个黑球的概率最大,最大概率为多少?
(1)根据题意设出黑球和白球的个数,列出关于概率的方程,解出两种球的个数,由题意知变量取值,根据对应的事件做出分布列,求出期望. (2)设袋中有黑球个数,设从袋中任意摸出两个球,至少得到一个黑球为事件C,用摸出的2个球中至少有1个黑球的对立事件摸两个球没有黑球,表示出概率,得到结果. 【解析】 (1)设袋中黑球的个数为x(个), 记“从袋中任意摸出一个球,得到黑球”为事件A, 则. ∴x=6. 设袋中白球的个数为y(个), 记“从袋中任意摸出两个球,至少得到一个白球”为事件B, 则, ∴y2-29y+120=0,∴y=5或y=24(舍). ∴红球的个数为15-6-5=4(个). ∴随机变量ξ的取值为0,1,2,分布列是 ξ的数学期望=; (2)设袋中有黑球z个,则,). 设“从袋中任意摸出两个球,至少得到一个黑球”为事件C, 用摸出的2个球中至少有1个黑球的对立事件求出 则, 当n=5时,P(C)最大,最大值为.
复制答案
考点分析:
相关试题推荐
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1manfen5.com 满分网与曲线C2manfen5.com 满分网(t∈R)交于A、B两点.求证:OA⊥OB.
查看答案
已知矩阵manfen5.com 满分网manfen5.com 满分网
(1)计算AB;
(2)若矩阵B把直线l:x+y+2=0变为直线l',求直线l'的方程.
查看答案
已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.
查看答案
已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).
(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n).
查看答案
已知半椭圆manfen5.com 满分网和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆manfen5.com 满分网内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点manfen5.com 满分网时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.