满分5 > 高中数学试题 >

已知函数f(x)=sin2x-cos2x-,x∈R. (1)求函数f(x)的最小...

已知函数f(x)=manfen5.com 满分网sin2x-cos2x-manfen5.com 满分网,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=manfen5.com 满分网,f(C)=0,若sinB=2sinA,求a,b的值.
(1)将f(x)解析式第二项利用二倍角的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由正弦函数的值域得出f(x)的最小值,找出ω的值,代入周期公式,即可求出f(x)的最小正周期; (2)由(1)确定的f(x)解析式及f(C)=0,求出sin(2C-)=1,由C的范围,求出2x-的范围,利用特殊角的三角函数值及正弦函数的图象求出C的度数,由sinB=2sinA,利用正弦定理得到b=2a①,再利用余弦定理得到c2=a2+b2-2abcosC,将c与cosC的值代入得到关于a与b的方程,记作②,联立①②即可求出a与b的值. 【解析】 (1)f(x)=sin2x-cos2x- =sin2x-- =sin2x-cos2x-1=sin(2x-)-1, ∵-1≤sin(2x-)-≤1, ∴f(x)的最小值为-2, 又ω=2, 则最小正周期是T==π; (2)由f(C)=sin(2C-)-1=0,得到sin(2C-)=1, ∵0<C<π,∴-<2C-<, ∴2C-=,即C=, ∵sinB=2sinA,∴由正弦定理得b=2a①,又c=, ∴由余弦定理,得c2=a2+b2-2abcos,即a2+b2-ab=3②, 联立①②解得:a=1,b=2.
复制答案
考点分析:
相关试题推荐
设等差数列{an}的前n项和为Sn,若对任意的等差数列{an}及任意的正整数n都有不等式manfen5.com 满分网+manfen5.com 满分网≥λamanfen5.com 满分网成立,则实数λ的最大值为    查看答案
在平面直角坐标系x0y中,抛物线y2=2x的焦点为F,若M是抛物线上的动点,则manfen5.com 满分网的最大值为    查看答案
将一个长宽分别a,b(0<a<b)的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子,若这个长方体的外接球的体积存在最小值,则manfen5.com 满分网的取值范围为    查看答案
已知等比数列{an}为递增数列,且manfen5.com 满分网,则数列an的通项公式an=    查看答案
已知变量a,θ∈R,则(a-2cosθ)2+(a-5manfen5.com 满分网-2sinθ)2的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.