满分5 > 高中数学试题 >

已知数列{an}和{bn}满足:a1=λ,,其中λ为实数,n为正整数. (Ⅰ)对...

已知数列{an}和{bn}满足:a1=λ,manfen5.com 满分网,其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
(1)这种证明数列不是等比数列的问题实际上不好表述,我们可以选择反证法来证明,假设存在推出矛盾. (2)用数列an构造一个新数列,我们写出新数列的第n+1项和第n项之间的关系,发现λ的取值影响数列的性质,所以要对λ进行讨论. (3)根据前面的运算写出数列的前n项和,把不等式写出来观察不等式的特点,构造新函数,根据函数的最值进行验证,注意n的奇偶情况要分类讨论. 【解析】 (Ⅰ)证明:假设存在一个实数λ,使{an}是等比数列,则有a22=a1a3,即,矛盾. 所以{an}不是等比数列. (Ⅱ)【解析】 因为bn+1=(-1)n+1[an+1-3(n+1)+21]=(-1)n+1(an-2n+14) =(-1)n•(an-3n+21)=-bn 又b1=-(λ+18),所以 当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列: 当λ≠-18时,b1=(λ+18)≠0,由上可知bn≠0, ∴(n∈N+). 故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,bn=0,Sn=0,不满足题目要求. ∴λ≠-18,故知bn=-(λ+18)•(-)n-1,于是可得 Sn=-, 要使a<Sn<b对任意正整数n成立, 即a<-(λ+18)•[1-(-)n]<b(n∈N+) 得 ① 当n为正奇数时,1<f(n)≤;当n为正偶数时,, ∴f(n)的最大值为f(1)=,f(n)的最小值为f(2)=,. 于是,由①式得a<-(λ+18)<. 当a<b≤3a时,由-b-18≥=-3a-18,不存在实数满足题目要求; 当b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18)
复制答案
考点分析:
相关试题推荐
已知双曲线manfen5.com 满分网左右两焦点为F1,F2,P是右支上一点,PF2⊥F1F2,OH⊥PF1于H,manfen5.com 满分网
(1)当manfen5.com 满分网时,求双曲线的渐近线方程;
(2)求双曲线的离心率e的取值范围;
(3)当e取最大值时,过F1,F2,P的圆的截y轴的线段长为8,求该圆的方程.
查看答案
manfen5.com 满分网如图所示,一辆载着重危病人的火车从O地出发,沿射线OA行驶(北偏东α角),其中manfen5.com 满分网,在距离O地5a km(a为正数)北偏东β角的N处住有一位医学专家,其中manfen5.com 满分网.现110指挥部紧急征调离O地正东p km的B处的救护车赶往N处载上医学专家全速追赶载有重危病人的火车,并在C处相遇,经测算当辆车行驶路线与OB围成的三角形OBC面积S最小时,抢救最及时.
(1)求S关于p的函数关系;
(2)当p为何值时,抢救最及时?
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.
(Ⅰ)若CD∥平面PBO,试指出点O的位置;
(Ⅱ)求证:平面PAB⊥平面PCD.
查看答案
已知函数f(x)=manfen5.com 满分网sin2x-cos2x-manfen5.com 满分网,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=manfen5.com 满分网,f(C)=0,若sinB=2sinA,求a,b的值.
查看答案
设等差数列{an}的前n项和为Sn,若对任意的等差数列{an}及任意的正整数n都有不等式manfen5.com 满分网+manfen5.com 满分网≥λamanfen5.com 满分网成立,则实数λ的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.