满分5 > 高中数学试题 >

如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是...

如图,F1、F2分别是椭圆C:manfen5.com 满分网(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)已知△AF1B的面积为40manfen5.com 满分网,求a,b 的值.

manfen5.com 满分网
(Ⅰ)直接利用∠F1AF2=60°,求椭圆C的离心率; (Ⅱ)设|BF2|=m,则|BF1|=2a-m,利用余弦定理以及已知△AF1B的面积为40,直接求a,b 的值. 【解析】 (Ⅰ)∠F1AF2=60°⇔a=2c⇔e==. (Ⅱ)设|BF2|=m,则|BF1|=2a-m, 在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2-2|BF2||F1F2|cos120° ⇔(2a-m)2=m2+a2+am.⇔m=. △AF1B面积S=|BA||F1F2|sin60° ⇔=40 ⇔a=10, ∴c=5,b=5.
复制答案
考点分析:
相关试题推荐
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.
(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

manfen5.com 满分网 查看答案
某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析.
(ⅰ)列出所有可能的抽取结果;
(ⅱ)求抽取的2所学校均为小学的概率.
查看答案
已知函数f(x)=manfen5.com 满分网
(1)求f(x)的定义域及最小正周期;
(2)求f(x)的单调递减区间.
查看答案
已知等差数列{an}满足:a5=9,a2+a6=14.
(1)求{an}的通项公式;
(2)若manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|-|x-3|≥0的解集是   
B.(几何证明选做题) 如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,则PC=   
C.(极坐标系与参数方程选做题)在极坐标系中,已知曲线ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,则实数a的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.