先判断二次函数的开口方向及对称轴,然后根据对称轴与已知区间的位置关系进行求解函数的最值,进而可求值域
【解析】
∵函数f(x)的图象开口向上,对称轴为x=a
①当a<0时,函数f(x)在[0,2]上单调递增
∴f(x)max=f(2)=3-4a,f(x)min=f(0)=-1
值域为[-1,3-4a]…(3分)
②当0≤a<1时,函数f(x)在[0,a]上单调递减,在[a,2]上单调递增
∴f(x)max=f(2)=3-4a,f(x)min=f(a)=-1-a2
值域为[-a2-1,3-4a]…(5分)
③当1≤a<2时函数f(x)在[0,a]上单调递减,在[a,2]上单调递增
∴f(x)max=f(0)=-1,f(x)min=f(a)=-1-a2
值域为[-a2-1,-1]…(8分)
④当a≥2时,函数f(x)在[0,2]上单调递减
∴f(x)max=f(0)=-1,f(x)min=f(,2)=3-4a
值域为[3-4a,1]