满分5 > 高中数学试题 >

已知数列an的前n项和为Sn,且a1=1,Sn=n2an(n∈N), (1)试计...

已知数列an的前n项和为Sn,且a1=1,Sn=n2an(n∈N),
(1)试计算S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.
(1)先根据数列的前n项的和求得S1,S2,S3,S4,可知分母和分子分别是等差数列进而可猜想出Sn. (2)利用an=Sn-Sn-1,整理出an的递推式,进而用叠乘法求得an. 【解析】 (1)由a1=1,Sn=n2an(n∈N)得 猜想 (2)证明:∵Sn=n2an①∴Sn-1=(n-1)2an-1② ①-②得Sn-Sn-1=n2an-(n-1)2an-1 ∴an=n2an-(n-1)2an-1 化简得∴ 把上面各式相乘得 ∴
复制答案
考点分析:
相关试题推荐
某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的,若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金,若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其它区域则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则能与了促销活动.
(Ⅰ) 求顾客甲中一等奖的概率;
(Ⅱ) 记ξ为顾客甲所得的奖金数,求ξ的分布列及其数学期望.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB-bcosA=0.
(Ⅰ)若b=7,a+c=13求此三角形的面积;
(Ⅱ)求manfen5.com 满分网的取值范围.
查看答案
f(x)=ax3+bx2+cx+d,定义y=f″(x)是函数y=f′(x)的导函数.若方程f″(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+3x+manfen5.com 满分网,则g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+…+g(manfen5.com 满分网)的值为    查看答案
函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,则f(1)+f(2)+f(3)+…+f(2011)的值等于   
manfen5.com 满分网 查看答案
对有n(n≥4)个元素的总体{1,2,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用Pij表示元素i和j同时出现在样本中的概率,则P1n=    ; 所有Pij(1≤i<j≤n)的和等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.