(I)欲证平面MBD⊥平面PAD,根据面面垂直的判定定理可知在平面MBD内一直线与平面PAD垂直,而根据平面PAD与平面ABCD垂直的性质定理可知BD⊥平面PAD;
(II)过P作PO⊥AD交AD于O,根据平面PAD与平面ABCD垂直的性质定理可知PO⊥平面ABCD,从而PO为四棱锥P-ABCD的高,四边形ABCD是梯形,根据梯形的面积公式求出底面积,最后用锥体的体积公式进行求解即可.
【解析】
(Ⅰ)证明:在△ABD中,
由于AD=4,BD=8,,
所以AD2+BD2=AB2.故AD⊥BD.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,
所以BD⊥平面PAD,
又BD⊂平面MBD,
故平面MBD⊥平面PAD.
(Ⅱ)【解析】
过P作PO⊥AD交AD于O,
由于平面PAD⊥平面ABCD,
所以PO⊥平面ABCD.因此PO为四棱锥P-ABCD的高,
又△PAD是边长为4的等边三角形.因此.
在底面四边形ABCD中,AB∥DC,AB=2DC,
所以四边形ABCD是梯形,在Rt△ADB中,斜边AB边上的高为,
此即为梯形ABCD的高,所以四边形ABCD的面积为.
故.