国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2010届毕业生李顺在本科期间共申请了24000元助学贷款,并承诺在毕业后3年内(按36个月计)全部还清.签约的单位提供的工资标准为第一年内每月1500元,第13个月开始,每月工资比前一个月增加5%直到4000元.李顺同学计划前12个月每个月还款额为500元,第13个月开始,每月还款额比前一月多x元.
(1)若李顺恰好在第36个月(即毕业后三年)还清贷款,求x的值;
(2)当x=50时,李顺同学将在第几个月还清最后一笔贷款?他还清贷款的那一个月的工资余额是多少?
(参考数据:1.05
18=2.406,1.05
19=2.526,1.05
20=2.653,1.05
21=2.786)
考点分析:
相关试题推荐
已知数列{a
n}的前n项和为S
n,对任意的n∈N
*,点(a
n,S
n)都在直线2x-y-2=0的图象上.
(1)求{a
n}的通项公式;
(2)是否存在等差数列{b
n},使得a
1b
1+a
2b
2+…+a
nb
n=(n-1)•2
n+1+2对一切n∈N
*都成立?若存在,求出{b
n}的通项公式;若不存在,说明理由.
查看答案
中国•湖南第三届国际矿冶文化旅游节将于2012年10月20日在长沙举行,为了搞好接待工作,组委会准备在理工学院和师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有师范学院的“高个子”才能担任“兼职导游”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职导游”的人数,试写出ξ的分布列,并求ξ的数学期望.
查看答案
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
( 1 )证明:PA∥平面BDE.
(2)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
查看答案
已知向量
,函数
.
(1)求函数f(x)的单调递增区间;
(2)如果△ABC中,f(A)=
,且角A所对的边a=2,求△ABC的周长l的取值范围.
查看答案
函数f
M(x)的定义域为R,且定义如下:
(其中M为非空数集且M⊊R),在实数集R上有两个非空真子集A、B满足A∩B=∅,则函数
的值域为
.
查看答案