满分5 > 高中数学试题 >

已知函数y=f(x-1)的图象关于点(1,0)对称,且当x∈(-∞,0)时,f(...

已知函数y=f(x-1)的图象关于点(1,0)对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3manfen5.com 满分网),则 a,b,c的大小关系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
由函数y=f(x-1)的图象关于点(1,0)对称,知f(x)为奇函数,当x∈(-∞,0)时,f(x)+xf′(x)<0成立,所以xf(x)为减函数,由此能判断a,b,c的大小关系. 【解析】 ∵当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,即:(xf(x))′<0, ∴xf(x)在 (-∞,0)上是减函数. 又∵函数y=f(x-1)的图象关于点(1,0)对称, ∴函数y=f(x)的图象关于点(0,0)对称, ∴函数y=f(x)是定义在R上的奇函数 ∴xf(x)是定义在R上的偶函数 ∴xf(x)在 (0,+∞)上是增函数. 又∵30.3>1>log23>0>=-2, 2=-, ∴(-)f(-)>30.3•f(30.3)>(logπ3)•f(logπ3),即()f()>30.3•f(30.3)>(logπ3)•f(logπ3) 即:c>a>b 故选B.
复制答案
考点分析:
相关试题推荐
命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0,若命题p且q为真,则a取值范围为( )
A.a≤-2或a=1
B.a≤-2或1≤a≤2
C.a≥1
D.-2a≤a≤1
查看答案
函数y=manfen5.com 满分网的定义域是( )
A.[-manfen5.com 满分网,-1)∪(1,manfen5.com 满分网]
B.(-manfen5.com 满分网,-1)∪(1,manfen5.com 满分网
C.[-2,-1)∪(1,2]
D.(-2,-1)∪(1,2)
查看答案
下列推理是归纳推理的是( )
A.A,B为定点,动点P满足||PA|-|PB||=2a<|AB|(a>0),则动点P的轨迹是以A,B为焦点的双曲线
B.由a1=2,an=3n-1求出S1,S2,S3,猜想出数列{an}的前n项和Sn的表达式
C.由圆x2+y2=r2的面积S=πr2,猜想出椭圆manfen5.com 满分网的面积S=πab
D.科学家利用鱼的沉浮原理制造潜水艇
查看答案
如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=( )
A.14
B.21
C.28
D.35
查看答案
选修4-5:不等式选讲
设函数f(x)=|x-1|+|x-a|(a∈R)
(1)当a=4时,求不等式f(x)≥5的解集;
(2)若f(x)≥4对x∈R恒成立,求a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.