满分5 > 高中数学试题 >

如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交...

如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)求证:FB2=FA•FD;
(3)若AB是△ABC外接圆的直径,且∠EAC=120°,BC=6,求AD的长.

manfen5.com 满分网
(1)两线段在同一个三角形中,故可以用证两底角相等,通过等边对等角来证两边相等; (2)由图形知,可以证明△FBA∽△FDB,由于角BFD是公共角,再证明角FAB与角FBD相等即可证出两三角形相似; (3)由题设条件可求得三角形ABC与三角形ACD的内角,又此两三角形都是直角三角形,故可借助直角三角形中的相关知识求AD的长. 【解析】 (1)因为∠EAC=∠ABC+∠ACB=∠ABC+∠BCF+∠ACF=∠ABC+∠BCF+∠ABF=∠BCF+∠FBC 又∠EAC=2∠FAB=2∠BCF 所以∠FCB=∠FBC, 所以FB=FC,(3分) (2)因为在△FBA∽△FDB中,∠BFD是公共角, 由于同弦所对的圆周角相等,故∠FAB等于∠FCB,又由(1)∠FCB=∠FBC 故可得∠FBC=∠FAB 所以△FBA∽△FDB,所以,整理得FB2=FA•FD(6分) (3)∠EAC=120°,所以∠BAC=60° 因为AB为直径,所以∠ACB=90°, ∴∠ABC=30°, 又∠DAC=60°,∠ACD=90°,可得∠ADC=30° 在直角三角形ABC中,由于BC=6,所以AC= 在直角三角形ADC中,可得(10分)
复制答案
考点分析:
相关试题推荐
巳知函数f(x)=x2-2ax-2alnx(x>0,a∈R,g(x)=ln2x+2a2+manfen5.com 满分网
(1) 证明:当a>0时,对于任意不相等的两个正实数x1、x2,均有manfen5.com 满分网>f(manfen5.com 满分网)成立;
(2) 记h(x)=manfen5.com 满分网
(i)若y=h′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(ii)证明:h(x)≥manfen5.com 满分网
查看答案
如图,椭圆的中心在坐标原点,长轴端点为A、B,右焦点为F,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点F作直线l1,l2,直线l1与椭圆分别交于点M、N,直线l2与椭圆分别交于点P、Q,且manfen5.com 满分网,求四边形MPNQ的面积S的最小值.

manfen5.com 满分网 查看答案
某校为了对学生的语文、英语的综合阅读能力进行分析,在全体学生中随机抽出5位学生的成绩作为样本,这5位学生的语文、英语的阅读能力等级得分(6分制)如下表:
x
(语文阅读能力)
23456
  y
(英语阅读能力)
1.534.556
(Ⅰ)如果以能力等级分数不小于3.5分作为良好的标准,若从该样本中任意抽取2名学生成绩,求这2名学生的语文、英语阅读能力均为良好的概率;
(Ⅱ)根据上表数据
(ⅰ)请画出上表数据的散点图;
(ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点,AB1与A1B的交点为O.
(1)求证:CD∥平面A1EB;
(2)求证:AB1⊥平面A1EB.

manfen5.com 满分网 查看答案
已知数列{an}满足manfen5.com 满分网
(1)求an
(2)若正项等比数列{bn}满足b2=s1,b4=a2+a3,求数列{bn}的前n项和Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.