满分5 > 高中数学试题 >

已知椭圆.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点. (I)...

已知椭圆manfen5.com 满分网.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.
(I)由题意及椭圆和圆的标准方程,利用椭圆离心率的定义和点到直线的距离公式即可求解; (II)由题意即m得取值范围分m=1时,m=-1及当m≠±1三大类求出|AB|的长度,利用直线方程与椭圆方程进行联立,利用根与系数的关系得到k与m之间关系等式,利用 【解析】 (I)由题意得a=2,b=1,所以c= ∴椭圆G的焦点坐标 离心率e=. (II)由题意知:|m|≥1, 当m=1时,切线l的方程为x=1,点A(1,)  点B(1,-) 此时|AB|=; 当m=-1时,同理可得|AB|=; 当|m|>1时,设切线l的方程为:y=k(x-m),由⇒(1+4k2)x2-8k2mx+4k2m2-4=0, 设A(x1,y1),B(x2,y2)则x1+x2=   又由l与圆圆x2+y2=1相切∴圆心到直线l的距离等于圆的半径即=1⇒m2=, 所以|AB|= ==,由于当m=±1时,|AB|=, 当m≠±1时,|AB|=,此时m∈(-∞,-1]∪[1,+∞) 又|AB|=≤2(当且仅当m=±时,|AB|=2), 所以,|AB|的最大值为2. 故|AB|的最大值为2.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网,左右焦点分别为F1,F2
(1)若C上一点P满足∠F1PF2=90°,求△F1PF2的面积;
(2)直线l交C于点A,B,线段AB的中点为manfen5.com 满分网,求直线l的方程.
查看答案
已知关于x的一元二次方程x2-ax+2a-3=0,求使方程有两个大于零的实数根的充要条件.
查看答案
在平面直角坐标系xOy中,已知椭圆C:manfen5.com 满分网(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线l的斜率为2且经过椭圆C的左焦点.求直线l与该椭圆C相交的弦长.
查看答案
已知离心率为manfen5.com 满分网的椭圆C:manfen5.com 满分网=1(a>b>o)过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆于C不同的两点A,B.
(1)求椭圆的C方程.
(2)证明:若直线MA,MB的斜率分别为k1、k2,求证:k1+k2=0.

manfen5.com 满分网 查看答案
已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点.
(1)求证:OA⊥OB;
(2)当△OAB的面积等于manfen5.com 满分网时,求k的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.