满分5 > 高中数学试题 >

设抛物线y2=2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,...

设抛物线y2=2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
先求出抛物线的焦点坐标,然后得到经过点F的直线的方程后代入到抛物线中消去x得到关于y的一元二次方程,进而得到两根之积,根据BC∥x轴与点c在准线上可求得c的坐标,进而可表示出直线CO的斜率,同时可得到k也是直线OA的斜率,所以直线AC经过原点O. 得证. 证明:如图因为抛物线y2=2px(p>0)的焦点为F(,0), 所以经过点F的直线的方程可设为; 代入抛物线方程得y2-2pmy-p2=0, 若记A(x1,y1),B(x2,y2),则y1,y2是该方程的两个根, 所以y1y2=-p2. 因为BC∥x轴,且点c在准线x=-上, 所以点c的坐标为(-,y2), 故直线CO的斜率为. 即k也是直线OA的斜率,所以直线AC经过原点O.
复制答案
考点分析:
相关试题推荐
如图,A1,A为椭圆的两个顶点,F1,F2为椭圆的两个焦点.
(Ⅰ)写出椭圆的方程;
(Ⅱ)过线段OA上异于O,A的任一点K作OA的垂线,交椭圆于P,P1两点,直线A1P与AP1交于点M.求证:点M在双曲线manfen5.com 满分网上.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(Ⅰ)求实数b的值;
(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
查看答案
(1)已知△ABC的三个顶点坐标分别为A(1,3)、B(3,1)、C(-1,0),求BC边上的高所在的直线方程.
(2)过椭圆manfen5.com 满分网内一点M(2,1)引一条弦,使得弦被M点平分,求此弦所在的直线方程.
查看答案
若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.