满分5 > 高中数学试题 >

如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段...

如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

manfen5.com 满分网
(1)D,E分别为AC,AB的中点,易证DE∥平面A1CB; (2)由题意可证DE⊥平面A1DC,从而有DE⊥A1F,又A1F⊥CD,可证A1F⊥平面BCDE,问题解决; (3)取A1C,A1B的中点P,Q,则PQ∥BC,平面DEQ即为平面DEP,由DE⊥平面,P是等腰三角形DA1C底边A1C的中点,可证A1C⊥平面DEP,从而A1C⊥平面DEQ. 【解析】 (1)∵D,E分别为AC,AB的中点, ∴DE∥BC,又DE⊄平面A1CB, ∴DE∥平面A1CB, (2)由已知得AC⊥BC且DE∥BC, ∴DE⊥AC, ∴DE⊥A1D,又DE⊥CD, ∴DE⊥平面A1DC,而A1F⊂平面A1DC, ∴DE⊥A1F,又A1F⊥CD, ∴A1F⊥平面BCDE, ∴A1F⊥BE. (3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC. ∵DE∥BC, ∴DE∥PQ. ∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC, ∴DE⊥A1C, 又∵P是等腰三角形DA1C底边A1C的中点, ∴A1C⊥DP, ∴A1C⊥平面DEP,从而A1C⊥平面DEQ, 故线段A1B上存在点Q,使A1C⊥平面DEQ
复制答案
考点分析:
相关试题推荐
已知A,B,C为锐角△ABC的三个内角,向量manfen5.com 满分网=(2-2sinA,cosA+sinA)与manfen5.com 满分网=(sinA-cosA,1+sinA)共线.
(1)求角A的大小;
(2)求函数manfen5.com 满分网的值域.
查看答案
如图,在长方体ABCD-A1B1C1D1中,E、P分别BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=1,AB=2.
(1)求证:MN∥面ADD1A1
(2)求MN与平面ABCD所成角的正切值;
(3)求三棱锥P-DEN的体积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)若f(x)图象左移θ单位后对应函数为偶函数,求θ的值;
(2)若manfen5.com 满分网时,不等式f(x)>m恒成立,求实数m的取值范围.
查看答案
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=manfen5.com 满分网AA1,D是棱AA1的中点.
(I) 证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,求cos(α-β)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.