设函数![]()
![]()
(1)求
的单调区间、最大值;
(2)讨论关于
的方程
的根的个数.
若
的定义域为
,值域为
,则称函数
是
上的“四维方军”函数.
(1)设
是
上的“四维方军”函数,求常数
的值;
(2)问是否存在常数
使函数
是区间
上的“四维方军”函数?若存在,求出
的值,否则,请说明理由.
已知函数
,
(1)当
时,求曲线
在点
处的切线方程;
(2)求函数
的极值.
已知
R,函数
e
.
(1)若函数
没有零点,求实数
的取值范围;
(2)若函数
存在极大值,并记为
,求
的表达式;
(3)当
时,求证:
.
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购x件,服装的实际出厂单价为p元,写出函数
的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
已知向量
,向量
,函数
·
.
(1)求
的最小正周期T;
(2)若方程
在
上有解,求实数
的取值范围.
