设函数
的定义域为
,若存在闭区间
,使得函数
满足:①
在
上是单调函数;②
在
上的值域是
,则称区间
是函数
的“和谐区间”.下列结论错误的是( )
A.函数
(
)存在“和谐区间”
B.函数
(
)不存在“和谐区间”
C.函数![]()
![]()
)存在“和谐区间”
D.函数
(
)不存在“和谐区间”
若将函数
(
)的图像向左平移
(
)个单位后,所得图像关于原点对称,则
的最小值是( )
A.
B.
C.
D.![]()
已知数列
具有性质:①
为整数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
.
(1)若
为偶数,且
成等差数列,求
的值;
(2)设
(
且
N),数列
的前
项和为
,求证:
;
(3)若
为正整数,求证:当
(
N)时,都有
.
已知函数
.
(1)当
时,判断
的奇偶性,并说明理由;
(2)当
时,若
,求
的值;
(3)若
,且对任何
不等式
恒成立,求实数
的取值范围.
某企业生产某种商品
吨,此时所需生产费用为(
)万元,当出售这种商品时,每吨价格为
万元,这里
(
为常数,
)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求
的值.
已知以角
为钝角的的三角形
内角
的对边分别为
、
、
,
,且
与
垂直.
(1)求角
的大小;
(2)求
的取值范围
