定义在
上的函数
,如果对任意
,恒有
(
,
)成立,则称
为
阶缩放函数.
(1)已知函数
为二阶缩放函数,且当
时,
,求
的值;
(2)已知函数
为二阶缩放函数,且当
时,
,求证:函数
在
上无零点;
(3)已知函数
为
阶缩放函数,且当
时,
的取值范围是
,求
在
(
)上的取值范围.
已知数列
中,
,
,
.
(1)证明:数列
是等比数列,并求数列
的通项公式;
(2)在数列
中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若
且
,
,求证:使得
,
,
成等差数列的点列
在某一直线上.
如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径
毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好
分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后
(单位:分钟),瓶内液面与进气管的距离为
(单位:厘米),已知当
时,
.试将
表示为
的函数.(注:
)
已知函数
(
)
(1)求函数
的最大值,并指出取到最大值时对应的
的值;
(2)若
,且
,计算
的值.
已知点
,点
在曲线
:
上.
(1)若点
在第一象限内,且
,求点
的坐标;
(2)求
的最小值.
若
(
)是
所在的平面内的点,且
.

给出下列说法:
①
;
②
的最小值一定是
;
③点
、
在一条直线上;
④向量
及
在向量
的方向上的投影必相等.
其中正确的个数是( )
A.
个. B.
个.
C.
个.
D.
个.
