已知等比数列
的公比为
,
是
的前
项和.
(1)若
,
,求
的值;
(2)若
,
,
有无最值?并说明理由;
(3)设
,若首项
和
都是正整数,
满足不等式:
,且对于任意正整数
有
成立,问:这样的数列
有几个?
对定义在区间
上的函数
,若存在闭区间
和常数
,使得对任意的
,都有
,且对任意的
都有
恒成立,则称函数
为区间
上的“
型”函数.
(1)求证:函数
是
上的“
型”函数;
(2)设
是(1)中的“
型”函数,若不等式
对一切的
恒成立,求实数
的取值范围;
(3)若函数
是区间
上的“
型”函数,求实数
和
的值.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数
模型制定奖励方案,试用数学语言表述该公司对奖励函数
模型的基本要求,并分析函数
是否符合这个要求,并说明原因;
(2)若该公司采用函数
作为奖励函数模型,试确定最小的正整数
的值.
已知函数
.
(1)求函数
的最小正周期;
(2)当
时,求函数
的最大值,最小值.
记函数
的定义域为
,
的定义域为
.若
,求实数
的取值范围.
设函数
,其中
为已知实数,
,则下列各命题中错误的是( )
A.若
,则
对任意实数恒成立;
B.若
,则函数
为奇函数;
C.若
,则函数
为偶函数;
D.当
时,若
,则![]()
