一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为_____________.
的展开式中
的系数是__________.
在
中,
.点M满足
,则
______.
过椭圆
的左焦点作互相垂直的两条直线,分别交椭圆于
四点,则四边形
面积的最大值与最小值之差为( )
(A)
(B)
(C)
(D)![]()
已知等比数列
的公比为
,
是
的前
项和.
(1)若
,
,求
的值;
(2)若
,
,
有无最值?并说明理由;
(3)设
,若首项
和
都是正整数,
满足不等式:
,且对于任意正整数
有
成立,问:这样的数列
有几个?
对定义在区间
上的函数
,若存在闭区间
和常数
,使得对任意的
,都有
,且对任意的
都有
恒成立,则称函数
为区间
上的“
型”函数.
(1)求证:函数
是
上的“
型”函数;
(2)设
是(1)中的“
型”函数,若不等式
对一切的
恒成立,求实数
的取值范围;
(3)若函数
是区间
上的“
型”函数,求实数
和
的值.
