三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若
,
,PB与底面ABC成60°角,
分别是
与
的中点,
是线段
上任意一动点(可与端点重合),求多面体
的体积。
集合
,
,若命题
,命题
,且
是
必要不充分条件,求实数
的取值范围。
若对任意
,
,(
、
)有唯一确定的
与之对应,称
为关于
、
的二元函数. 现定义满足下列性质的二元函数
为关于实数
、
的广义“距离”:
(1)非负性:
,当且仅当
时取等号;
(2)对称性:
;
(3)三角形不等式:
对任意的实数z均成立.
今给出个二元函数:①
;②
;③
;④
.则能够成为关于的
、
的广义“距离”的函数的所有序号是
.
已知函数f(x)=ax2+(b+1)x+b−1,且aÎ(0,3),则对于任意的bÎR,函数F(x)=f(x)−x总有两个不同的零点的概率是
已知
中,
分别是角
的对边,
,那么
的面积
________
。
设
,
满足条件
则点
构成的平面区域面积等于
.
