如图,海上有
两个小岛相距10
,船O将保持观望A岛和B岛所成的视角为
,现从船O上派下一只小艇沿
方向驶至
处进行作业,且
.设![]()
。

(1)用
分别表示
和
,并求出
的取值范围;
(2)晚上小艇在
处发出一道强烈的光线照射A岛,B岛至光线
的距离为
,求BD的最大值.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4。
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为
,将球放回袋中,然后再从袋中随机取一个球,该球的编号为
,求![]()
![]()
+2的概率。
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若
,
,PB与底面ABC成60°角,
分别是
与
的中点,
是线段
上任意一动点(可与端点重合),求多面体
的体积。
集合
,
,若命题
,命题
,且
是
必要不充分条件,求实数
的取值范围。
若对任意
,
,(
、
)有唯一确定的
与之对应,称
为关于
、
的二元函数. 现定义满足下列性质的二元函数
为关于实数
、
的广义“距离”:
(1)非负性:
,当且仅当
时取等号;
(2)对称性:
;
(3)三角形不等式:
对任意的实数z均成立.
今给出个二元函数:①
;②
;③
;④
.则能够成为关于的
、
的广义“距离”的函数的所有序号是
.
已知函数f(x)=ax2+(b+1)x+b−1,且aÎ(0,3),则对于任意的bÎR,函数F(x)=f(x)−x总有两个不同的零点的概率是
