若
为圆
的弦
的中点,则直线
的方程( )
A.
B.
![]()
C.
D.
![]()
已知
且
,函数
在同一坐标系中的图象可能是( )

(1)解关于
的不等式
;
(2)若关于
的不等式
有解,求实数
的取值范围.
已知直线
的参数方程为
(t为参数),曲线C的参数方程为
(
为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为
,判断点P与直线
的位置关系;
(2)设点Q是曲线C上的一个动点,求点Q到直线
的距离的最小值与最大值.
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=
,⊙O的半径为3,求OA的长.
已知函数
,h(x)=2alnx,
.
(1)当a∈R时,讨论函数
的单调性;
(2)是否存在实数a,对任意的
,且
,都有![]()
恒成立,若存在,求出a的取值范围;若不存在,说明理由.
