如图,游客在景点
处下山至
处有两条路径.一条是从
沿直道步行到
,另一条是先从
沿索道乘缆车到
,然后从
沿直道步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
.假设缆车匀速直线运动的速度为
,索道
长为
,经测量
,
.

(1)求山路
的长;
(2)假设乙先到,为使乙在
处等待甲的时间不超过
分钟,乙步行的速度应控制在什么范围内?
已知函数
和
的图象关于
轴对称,且
.
(1)求函数
的解析式;
(2)解不等式
.
已知
,
,
.
(1)若
,求
的值;
(2)设
,若
,求
、
的值.
已知椭圆C:
的两个焦点是F1(
c,0),F2(c,0)(c>0)。
(I)若直线
与椭圆C有公共点,求
的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足
且
,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.
已知函数
.
(I)讨论
的单调性;
(Ⅱ)若
在(1,+
)恒成立,求实数a的取值范围.
