已知数列是首项为1,公差为2的等差数列,数列的前n项和.
(I)求数列的通项公式;
(II)设, 求数列的前n项和.
如图,四边形ABCD为正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分别是线段PA、PD、CD、BC的中点.
(I)求证:BC∥平面EFG;
(II)求证:DH平面AEG.
已知函数.
(I)若函数为奇函数,求实数的值;
(II)若对任意的,都有成立,求实数的取值范围.
在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(I)若,求边c的值;
(II)设,求角A的最大值.
已知是两条不同的直线,是两个不同的平面,有下列五个命题
① ②
③ ④
⑤
其中真命题的序号是__________________________(把所有真命题的序号都填上)
设实数满足约束条件,若目标函数 的最大值为8,则a+b的最小值为_____________.