某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设.
(I)将(O为坐标原点)的面积S表示成f的函数S(t);
(II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.
已知等差数列满足:,该数列的前三项分别加上l,l,3后顺次成为等比数列的前三项.
(I)求数列,的通项公式;
(II)设,若恒成立,求c的最小值.
在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,ADC-900,AB=AD=PD=1.CD=2.
(I)求证:BC平面PBD:
(II)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角
E-BD-P的大小为.
已知函数.
(I)若函数为奇函数,求实数的值;
(II)若对任意的,都有成立,求实数的取值范围.
在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(I)若,求边c的值;
(II)设,求的最大值.
若二次函数的图象和直线无交点,现有下列结论:
①方程一定没有实数根;
②若,则不等式对一切实数x都成立;
③若,则必存在实数,使;
④函数的图象与直线一定没有交点,
其中正确的结论是____________(写出所有正确结论的编号).