对函数,现有下列命题:
①函数是偶函数;
②函数的最小正周期是;
③点是函数的图象的一个对称中心;
④函数在区间上单调递增,在区间上单调递减.
其中是真命题的是______________________.
在等比数列中,若公比,且前项之和等于,则该数列的通项公式__________.
设是定义在R上的奇函数,当时,,则_________.
设集合,,则_________.
已知函数,函数.
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设.
(I)将(O为坐标原点)的面积S表示成f的函数S(t);
(II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.