设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若在上无最小值,且在上是单调增函数,求a的取值范
围;并由此判断曲线与曲线在交点个数.
已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.
(l)求的值;
(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.
已知定义域为R的函数是奇函数.
(1)求,的值;
(2)证明函数的单调性.
已知函数
(l)求函数的最小正周期和最大值;
(2)求函数在上的单调递减区间.
设递增等差数列的前n项和为,已知,是和的等比中项.
(l)求数列的通项公式;
(2)求数列的前n项和.
命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.