已知中,若为的重心,则 .
在中,依次成等比数列,则角的取值范围是 .
若对任意,,(、)有唯一确定的与之对应,称为关于、的二元函数.现定义满足下列性质的二元函数为关于实数、的广义“距离”:
(1)非负性:,当且仅当时取等号;
(2)对称性:;
(3)三角形不等式:对任意的实数z均成立.
今给出四个二元函数:①;②;③;
④.能够成为关于的、的广义“距离”的函数的所有序号是( )
A. ① B. ② C. ③ D. ④
设函数,若实数满足,则( )
A. B.
C. D.
已知函数在上是增函数,上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数m的取值范围;
(3)是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.