已知函数
.
(Ⅰ)若函数
的值域为
.求关于
的不等式
的解集;
(Ⅱ)当
时,
为常数,且
,
,求
的最小值.
在
中,角
对边分别是
,且满足
.
(Ⅰ)求角
的大小;
(Ⅱ)若
,
的面积为
;求
.
已知等比数列
为递增数列,且
,
.
(Ⅰ)求
;
(Ⅱ)令
,不等式
的解集为
,求所有
的和.
已知函数
(
)的最小正周期为
.
(Ⅰ)求函数
的单调增区间;
(Ⅱ)将函数
的图象向左平移
个单位,再向上平移
个单位,得到函数
的图象.求
在区间
上零点的个数.
若对任意
,
,(
、
)有唯一确定的
与之对应,称
为关于
、
的二元函数.现定义满足下列性质的二元函数
为关于实数
、
的广义“距离”:
(1)非负性:
,当且仅当
时取等号;
(2)对称性:
;
(3)三角形不等式:
对任意的实数z均成立.
今给出四个二元函数:
①
;②
③
;④
.
能够成为关于的
、
的广义“距离”的函数的所有序号是
.
已知函数
是
上的奇函数,且
的图象关于直线
对称,当
时,
,则
.
