如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和
(1)求证 (2)求的值
已知
(1)若存在使得≥0成立,求的范围
(2)求证:当>1时,在(1)的条件下,成立
已知椭圆中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆的方程;
(2)设直线经过点(0,1),且与椭圆交于两点,若,求直线的方程.
已知梯形中,,,、分别是、上的点,,.沿将梯形翻折,使平面⊥平面(如图).是的中点.
(1)当时,求证:⊥ ;
(2)当变化时,求三棱锥体积的最大值.
某年青教师近五年内所带班级的数学平均成绩统计数据如下:
年份年 |
2009 |
2010 |
2011 |
2012 |
2013 |
平均成绩分 |
97 |
98 |
103 |
108 |
109 |
(1)利用所给数据,求出平均分与年份之间的回归直线方程,并判断它们之间是正相关还是负相关。
(2)利用(1)中所求出的直线方程预测该教师2014年所带班级的数学平均成绩.
在中,分别为内角A,B,C所对的边长,,.
(1)求角B的大小。
(2)若求的面积.