满分5 >
高中数学试题 >
若命题“使得”为假命题,则实数m的取值范围是( ) A. B. C. D.
考点分析:
相关试题推荐
(1)如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA
(2)若点A(2,2)在矩阵M=
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵;
(3)在极坐标系中,A为曲线ρ
2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值;
(4)已知a
1,a
2…a
n都是正数,且a
1•a
2…a
n=1,求证:
.
查看答案
设数列{a
n}的前n项和为S
n,已知S
n+1=pS
n+q(p,q为常数,n∈N
*),a
1=2,a
2=1,a
3=q-3p.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)是否存在正整数m,n,使
成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
查看答案
已知函数f(x)=(ax
2+x)e
x,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调增函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
查看答案
平面直角坐标系xoy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为
(1)求圆O的方程;
(2)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线l的方程;
(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案