满分5 > 高中数学试题 >

如图,已知半径为的⊙与轴交于、两点,为⊙的切线,切点为,且在第一象限,圆心的坐标...

如图,已知半径为满分5 manfen5.com的⊙满分5 manfen5.com满分5 manfen5.com轴交于满分5 manfen5.com满分5 manfen5.com两点,满分5 manfen5.com为⊙满分5 manfen5.com的切线,切点为满分5 manfen5.com,且满分5 manfen5.com在第一象限,圆心满分5 manfen5.com的坐标为满分5 manfen5.com,二次函数满分5 manfen5.com的图象经过满分5 manfen5.com满分5 manfen5.com两点.

满分5 manfen5.com

(1)求二次函数的解析式;

(2)求切线满分5 manfen5.com的函数解析式;

(3)线段满分5 manfen5.com上是否存在一点满分5 manfen5.com,使得以满分5 manfen5.com满分5 manfen5.com满分5 manfen5.com为顶点的三角形与满分5 manfen5.com相似.若存在,请求出所有符合条件的点满分5 manfen5.com的坐标;若不存在,请说明理由.

 

(1)二次函数的解析式为;(2)切线的函数解析式为; (3)点的坐标为或. 【解析】 试题分析:(1)先求出圆的方程,并求出圆与轴的交点和的坐标,然后将点和的坐标代入二次函数中解出和的值,从而确定二次函数的解析式;(2)由于切线过原点,可设切线的函数解析式为,利用直线与圆求出值,结合点的位置确定切线的函数解析式;(3)对或进行分类讨论,充分利用几何性质,从而确定点的坐标. 试题解析:(1)由题意知,圆的方程为,令,解得或, 故点的坐标为,点的坐标为, 由于二次函数经过、两点,则有,解得, 故二次函数的解析式为; (2)设直线所对应的函数解析式为,由于点在第一象限,则, 由于直线与圆相切,则,解得, 故切线的函数解析式为; (3)由图形知,在中,,,, 在中,,由于,因为, 则必有或, 联立,解得,故点的坐标为, 当时,直线的方程为,联立,于是点的坐标为; 当时,,由于点为线段的中点,故点为线段的中点, 此时点的坐标为. 综上所述,当点的坐标为或时,. 考点:1.二次函数的解析式;2.直线与圆的位置关系;3.相似三角形
复制答案
考点分析:
相关试题推荐

已知多面体满分5 manfen5.com中,满分5 manfen5.com平面满分5 manfen5.com满分5 manfen5.com平面满分5 manfen5.com满分5 manfen5.com满分5 manfen5.com满分5 manfen5.com满分5 manfen5.com满分5 manfen5.com的中点.

满分5 manfen5.com

(1)求证:满分5 manfen5.com

(2)求直线满分5 manfen5.com与平面满分5 manfen5.com所成角的余弦值的大小.

 

查看答案

如图,已知点满分5 manfen5.com满分5 manfen5.com,点满分5 manfen5.com为坐标原点,点满分5 manfen5.com在第二象限,且满分5 manfen5.com,记满分5 manfen5.com.

满分5 manfen5.com

(1)求满分5 manfen5.com的值;(2)若满分5 manfen5.com,求满分5 manfen5.com的面积.

 

查看答案

数列满分5 manfen5.com中,满分5 manfen5.com,前满分5 manfen5.com项的和是满分5 manfen5.com,且满分5 manfen5.com满分5 manfen5.com.

(1)求数列满分5 manfen5.com的通项公式;

(2)记满分5 manfen5.com,求满分5 manfen5.com.

 

查看答案

如图所示,满分5 manfen5.com满分5 manfen5.com是半径为满分5 manfen5.com的圆满分5 manfen5.com的两条弦,它们相交于满分5 manfen5.com,且满分5 manfen5.com满分5 manfen5.com的中点,满分5 manfen5.com满分5 manfen5.com,则满分5 manfen5.com____.

满分5 manfen5.com

 

 

查看答案

在极坐标系满分5 manfen5.com中,过点满分5 manfen5.com作圆满分5 manfen5.com的切线,则切线的极坐标方程为_______________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.