已知数列、中,,且当时,,.记的阶乘.
(1)求数列的通项公式;
(2)求证:数列为等差数列;
(3)若,求的前 项和.
一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知中,三条边所对的角分别为、、,且.
(1)求角的大小;
(2)若,求的最大值.
如图所示,过⊙外一点作一条直线与⊙交于、两点,切⊙于,弦过的中点.已知,,则 .
直线与曲线相交,截得的弦长为_
某公司租赁甲、乙两种设备生产、两类产品,甲种设备每天能生产类产品件和类产品件,乙种设备每天能生产类产品件和类产品件.已知设备甲每天的租赁费为元,设备乙每天的租赁费为元,现该公司至少要生产类产品件,类产品件,所需租赁费最少为____元.