已知椭圆E:
+
=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为
.
(1)求椭圆E的方程;
(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足
=
+
,证明
·
为定值,并求出该值.
已知椭圆
+
=1(a>b>0)与抛物线y2=2px(p>0)有相同的焦点,P、Q是椭圆与抛物线的交点,若PQ经过焦点F,则椭圆
+
=1(a>b>0)的离心率为 .
点A为两曲线C1:
+
=1和C2:x2-
=1在第二象限的交点,B、C为曲线C1的左、右焦点,线段BC上一点P满足:
=
+m(
+
),则实数m的值为 .
过椭圆
+
=1(a>b>0)的焦点垂直于x轴的弦长为
,则双曲线
-
=1的离心率e的值是( )
(A)
(B) ![]()
(C)
(D) ![]()
如图所示,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点.

(1)求r的取值范围;
(2)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.
已知椭圆C的左、右焦点坐标分别是(-
,0),(
,0),离心率是
.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.
