函数f(x)=1-
( )
(A)在(-1,+∞)上单调递增
(B)在(1,+∞)上单调递增
(C)在(-1,+∞)上单调递减
(D)在(1,+∞)上单调递减
给定函数①y=
,②y=lo
(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上是单调递减的函数的序号是( )
(A)①② (B)②③ (C)③④ (D)①④
函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是( )
(A)(-∞,0],(-∞,1] (B)(-∞,0],[1,+∞)
(C)[0,+∞),(-∞,1] (D)[0,+∞),[1,+∞)
已知集合A={y|y=x2-
x+1,x∈[
,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.
在空间中:①若四点不共面,则这四点中任何三点都不共线;
②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是 .
sinα≠sinβ是α≠β的 条件.
