(2015秋•重庆校级期末)已知集合A={t|t使{x|x2+2tx﹣4t﹣3≠0}=R},集合B={t|t使{x|x2+2tx﹣2t=0}≠∅},其中x,t均为实数.
(1)求A∩B;
(2)设m为实数,g(α)=﹣sin2α+mcosα﹣2m,α∈[π,π],求M={m|g(α)∈A∩B}.
(2015秋•重庆校级期末)已知二次函数f(x)=x2﹣16x+q+3.
(1)若函数在区间[﹣1,1]上最大值除以最小值为﹣2,求实数q的值;
(2)问是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12﹣t(此区间[a,b]的长度为b﹣a)
(2015秋•重庆校级期末)函数f(x)=cos2(ωx+φ)﹣cos(ωx+φ)•sin(ωx+φ+)﹣(ω>0,0<φ<)同时满足下列两个条件:
①f(x)图象最值点与左右相邻的两个对称中心构成等腰直角三角形
②(,0)是f(x)的一个对称中心、
(1)当x∈[0,2]时,求函数f(x)的单调递减区间;
(2)令g(x)=f2(x﹣)+f(x﹣)+m,若g(x)在x∈[,]时有零点,求此时m的取值范围.
(2015秋•重庆校级期末)已知f(x)=x为偶函数(t∈z),且在x∈(0,+∞)单调递增.
(1)求f(x)的表达式;
(2)若函数g(x)=loga[a﹣x]在区间[2,4]上单调递减函数(a>0且a≠1),求实数a的取值范围.
(2015秋•重庆校级期末)已知0<α<,tanα=
(1)求的值;
(2)求sin(﹣α)的值.
(2015秋•重庆校级期末)已知A={x|x2+2x﹣8>0},B={x||x﹣a|<5|},且A∪B=R,求a的取值范围.