(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积.
(2015•开封模拟)如图,三棱柱ABC﹣A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若AB=2,求三棱柱ABC﹣A1B1C1体积.
(2012•东至县一模)在△ABC中,内角A、B、C对边长分别是a,b,c,已知c=2,C=
(Ⅰ)若△ABC的面积等于;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
(2015秋•广州校级月考)已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=(n∈N*),若数列{bn}的前n项和为Tn,证明:.
(2015秋•广州校级月考)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[0,1]时,f(x)=﹣2x2+4x﹣2,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是 .
(2015秋•广州校级月考)已知三棱锥S﹣ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,若该三棱锥外接球的半径为,Q是外接球上一动点,则点Q到平面ABC的距离的最大值为 .