(2015•葫芦岛二模)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为(,),直线的极坐标方程为ρcos(θ﹣)=a,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为(α为参数),试判断直线与圆的位置关系.
(2015•河北)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.
(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;
(Ⅱ)若OA=CE,求∠ACB的大小.
(2013•浙江二模)已知函数f(x)=(其中a为常数).
(Ⅰ)当a=0时,求函数的单调区间;
(Ⅱ)当0<a<1时,设函数f(x)的3个极值点为x1,x2,x3,且x1<x2<x3.证明:x1+x3>.
(2014•马鞍山一模)已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(2016•贵阳一模)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°.
(1)求证:平面PBC⊥平面PAC;
(2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC所成角为30°?若存在,求出CD的长;若不存在,说明理由.