已知圆C的方程为:x2+y2=4
(1)求过点P(2,1)且与圆C相切的直线l的方程;
(2)直线l过点D(1,2),且与圆C交于A、B两点,若|AB|=2,求直线l的方程;
(3)圆C上有一动点M(x0,y0),=(0,y0),若向量=+,求动点Q的轨迹方程.
在三棱锥P﹣ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
如图,A,B,C是椭圆M:=1(a>b>0)上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC.
(1)求椭圆的离心率;
(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程.
如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,,M,N分别是棱CC1,AB中点.
(Ⅰ)求证:CN⊥平面ABB1A1;
(Ⅱ)求证:CN∥平面AMB1;
(Ⅲ)求三棱锥B1﹣AMN的体积.
观察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5
…
照此规律,第n个等式可为 .
设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为 .