给出下面两个命题,命题p:方程+=1表示焦点在x轴上的椭圆命题q:双曲线﹣=1的离心率e∈(1,2)已知¬p∨¬q为假,求实数m的取值范围.
已知z是复数,z+2i,均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
已知椭圆:+=1,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若AF2+BF2的最大值为5,则椭圆方程为 .
函数f(x)=x3+ax2+bx+a2在x=1时有极值为10,则a+b的值为 .
已知复数z=x+yi(x,y∈R,x≠0)且|z﹣2|=,则的范围为 .
在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O﹣LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是 .