如图,点F1,F2分别是椭圆C:的左、右焦点.点A是椭圆C上一点,点B是直线AF2与椭圆C的另一交点,且满足AF1⊥x轴,∠AF2F1=30°.
(1)求椭圆C的离心率e;
(2)若△ABF1的周长为,求椭圆C的标准方程;
(3)若△ABF1的面积为,求椭圆C的标准方程.
已知函数f(x)=x2+alnx.
(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;
(2)若a=1,求函数f(x)在[1,e]上的最值;
(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x﹣6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值;
(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
已知f(x)=.
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.
给出下面两个命题,命题p:方程+=1表示焦点在x轴上的椭圆命题q:双曲线﹣=1的离心率e∈(1,2)已知¬p∨¬q为假,求实数m的取值范围.
已知z是复数,z+2i,均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.