如图,在平面直角坐标系xOy中,已知点A为椭圆的右顶点,点D(1,0),点P,B在椭圆上,且在x轴上方,.
(1)求直线BD的方程;
(2)已知抛物线C:x2=2py(p>0)过点P,点Q是抛物线C上的动点,设点Q到点A的距离为d1,点Q到抛物线C的准线的距离为d2,求d1+d2的最小值.
某连锁经营公司所属的5个零售店某月的销售额和利润额资料如下表:
(1)画出销售额和利润额的散点图;
(2)若销售额和利润额具有线性相关关系.用最小二乘法计算利润额y对销售额x的回归直线方程.
已知抛物线C的顶点在原点,对称轴是x轴,抛物线过点M(,1).
(1)求C的方程;
(2)过C的焦点F作直线交抛物线于A,B两点,若|AB|=,|AF|<|BF|,求|AF|.
已知椭圆C的左,右焦点坐标分别是(﹣2,0),(2,0),离心率为,若P为椭圆C上的任意一点,过点P垂直于y轴的直线交y轴于点Q,M为线段QP的中点.
(1)求椭圆C短轴长;
(2)求点M的轨迹方程.
为响应工业园区举行的万人体质监测活动,某高校招募了N名志愿服务者,将所有志愿者按年龄情况分为25~30,30~35,35~40,45~50,50~55六个层次,其频率分布直方图如图所示,已知35~45之间的志愿者共20人.
(1)计算N的值;
(2)从45~55之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取2名担任后勤保障工作,求恰好抽到1名女教师,1名男教师的概率.
设条件 p:2x2﹣3x+1≤0,条件q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.