已知过抛物线y2=2px(p>0)的焦点,斜率为的直线交抛物线于A(x1,y1)和B(x2,y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若,求λ的值.
过点(4,﹣3)作圆C:(x﹣3)2+(y﹣1)2=1的切线,求此切线的方程.
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
椭圆,其两焦点为F1,F2,点P在椭圆C上,且 ,求椭圆C的方程.
已知a>0且a≠1,设命题p:函数y=logax在区间(0,+∞)内单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴有两个不同的交点,如果p∧q为真命题,试求a的取值范围.
求经过两直线l1:3x+4y﹣2=0与l2:2x+y+2=0的交点P且垂直于直线l3:x﹣2y﹣2=0的直线l的方程.