设函数f(x)=alnx﹣bx2(x>0);
(1)若函数f(x)在x=1处与直线相切
①求实数a,b的值;
②求函数上的最大值.
(2)当b=0时,若不等式f(x)≥m+x对所有的都成立,求实数m的取值范围.
据市场分析,粤西某海鲜加工公司,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本y(万元)关于月产量x(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时,每吨平均成本最低,最低成本是多少万元?
已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式2Sn=3an﹣3.
(I)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的通项公式是bn=,前n项和为Tn,求证:对于任意的n∈N*总有Tn<1.
在△ABC中,a、b、c分别是角A、B、C的对边,且,
(1)求角B的大小;
(2)若,求△ABC的面积.
给定两个命题,P:对任意实数x都有ax2+ax+1>0恒成立;Q:a2+8a﹣20<0.如果P∨Q为真命题,P∧Q为假命题,求实数a的取值范围.
给出下列命题:
(1)导数f′(x0)=0是y=f(x)在x0处取得极值的既不充分也不必要条件;
(2)若等比数列的n项sn=2n+k,则必有k=﹣1;
(3)若x∈R+,则2x+2﹣x的最小值为2;
(4)函数y=f(x)在[a,b]上必定有最大值、最小值;
(5)平面内到定点(3,﹣1)的距离等于到定直线x+2y﹣1的距离的点的轨迹是抛物线.
其中正确命题的序号是 .