已知数列满足,,并且,(为非零参数,2,3,4,…).
(1)若成等比数列,求参数的值;
(2)当时,证明();
(3)当时,证明().
如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求PQ中点的轨迹方程.
已知等差数列的公差为2,前项和为,且成等比数列.
(1)求数列的通项公式;
(2)令,求数列的前项和.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA-sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.
设直线l的方程为.
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.